

5 in 1 system for Faster, Smarter Diagnosis. OCT, Fundus Camera, Angiography, Biometry, Topography

OCTOWIUS

Fundus Camera Biometry Modelson Angiography K N 4200cs (6)

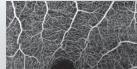
5 IN 1 SYSTEM

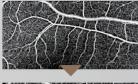
OCTavius presents the optimal solution.

OCT, Angiography, Fundus Camera, Biometry, Topography -

Experience faster and more accurate diagnostics with the Huvitz OCTavius.

High—speed scanning of up to 80,000 times per second, combined with upgraded scan quality powered by TAT (Triple Angiography Technology), enables more accurate diagnoses. It precisely provides not only detailed diagnostics for anterior and posterior segment diseases but also essential information for IOL surgery. OCTavius offers efficient clinical operation for examiners and a fast, comfortable examination environment for patients.


TAT (Triple Angiography Technology)



Real Time Tracking

Noise Cancelling

Motion Correction

OCTavius – all your diagnoses in one solution

OCT, Angiography, Fundus Camera, Biometry, Topography

OCTavius enables faster and broader observation and diagnosis of ophthalmic diseases. You can cross—compare lesions identified in en face and cross—sectional images with angiography images to obtain more precise data, which not only shortens examination time but also allows for efficient use of examination space.

Accurate and convenient diagnosis with a single scan

Through the OCT–Angiography Mode, you can obtain precise OCT cross–sectional structural information along with blood flow data in a single scan. First, simultaneously capturing fundus and OCT images minimizes patients' discomfort during the examination and provides a more comfortable and stable testing environment. Second, the fundus image allows intuitive confirmation of lesion location and precisely guides the accurate positioning of the OCT scan. Furthermore, you can comprehensively perform all processes—from measurement to analysis and report generation—using the built—in system, eliminating the need for a separate external PC and contributing to simplified clinical workflows and space savings.

A compact yet powerful integrated diagnostic system

OCTavius features a compact design that incorporates five integrated diagnostic systems. This system can be installed without size constraints, even in hospitals and research environments equipped with multiple diagnostic and treatment devices, Designed to enhance the convenience of both patients and examiners, OCTavius effectively improves clinical time efficiency and space utilization.

Access patient examination data anytime, anywhere with HIIS-1

Through HIIS-1, you can immediately access patient examination data regardless of your location. Additionally, all HOCT data can be analyzed in real-time using major internet browsers, including Chrome, Safari, and Internet Explorer.

User Friendly

Auto Tracking & Auto Shooting: Enables simple and reliable integrated diagnostics.

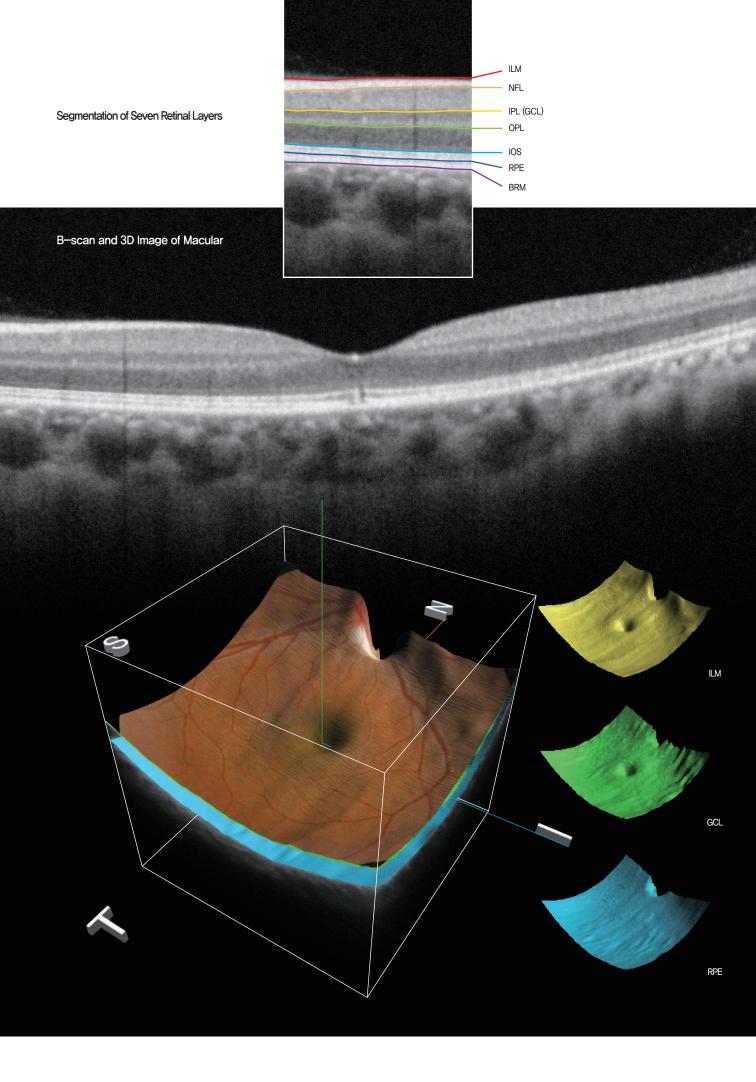
OCTavius is smart. It minimizes image quality variations caused by differences in examiners' measurement skills, providing highly reliable data as well as more accurate images tailored to the examiner's preferred measurement mode.

Semi Auto Mode for more precise images

You can obtain a more precise image by shooting Semi Auto Mode turning one's gaze to the side for patients with eye diseases such as cataract, strabismus, or optic disk and peripheral measurements,

Semi Auto Mode can also be applied to eyes with weak signals.

XY alignment, focus is automatically adjusted, and manual operation during auto adjustment is also possible.


The Optimize and Auto Shooting features enable users to intuitively assess shooting conditions and operate the device easily, allowing for the quick capture of optimal images.

Fast and reliable diagnosis, no matter who performs the measurement

You can scan error—free images quickly and easily using Auto Tracking, Optimize, and Auto Shooting Modes at the precise location. Semi Auto Mode allows for capturing even more detailed images when automatic measurement is challenging.

Forward – Back Left – Right Optimized Focus

High-Speed & High-Quality

Incredible speed of 80,000 A-scan/sec.:

More Realistic and Clearer image in high resolution

Provides High-speed Scan, High-quality Image by using Huvitz's outstanding optical technology and innovative image software. Shows extensive information, such as 3D structure of Retina, Macula's thickness and separation in a vivid image.

Accurate and Stable Image Averaging

OCT requires precise and stable acquisition of high-quality images.

OCTavius detects the patient's subtle and rapid eye movements using a fast scan speed* and the image processing algorithm of Smart Viewing Technology (SVT)**. It scans and corrects up to 80,000 times per second, enabling even beginners to acquire clear, superior, high-quality images without repetitive attempts.

** Smart Viewing Technology: Huvitz' proprietary Speckle-Noise-Reduction System & Pre-Acquiring Algorithm for obtaining high-quality images.

High Resolution Image - min. 60 lines/mm of central Fundus

Creates 3 um OCT Digital Resolution medical images, allows more precise Retina observation and useful follow—up examinations,

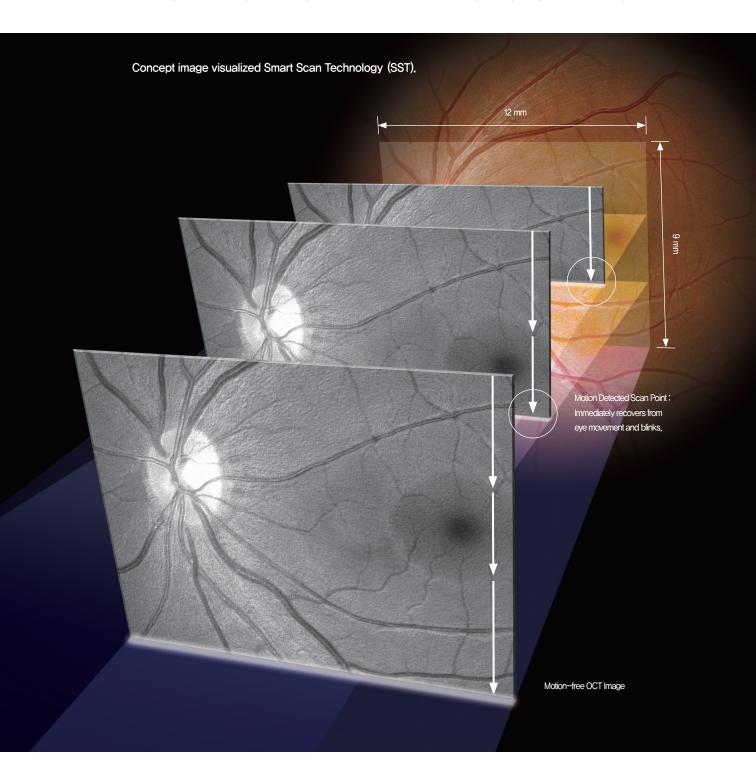
Level adjustments for detecting subtle differences

By precisely adjusting image brightness and detail quality, even subtle differences in lesions can be identified more clearly, enhancing diagnostic accuracy and enabling more effective detection of early-stage lesions.

Macular - Radial

Clearly visualized images of retinal layers

With faster and more precise B-scan speeds and 3D imaging, you can observe pathological forms in the retinal layer structure more clearly. (Up to a 26% improvement in angiography measurement speed compared to the previous HOCT-1/1F.) In addition, the seven retinal layer images are useful for a deeper interpretation of pathological mechanisms in the macula and optic disc, including factors that damage photoreceptor function and the retinal and choroidal vasculature.


Optic Disc - 3D

Smart Scan

A single click from start to finish:

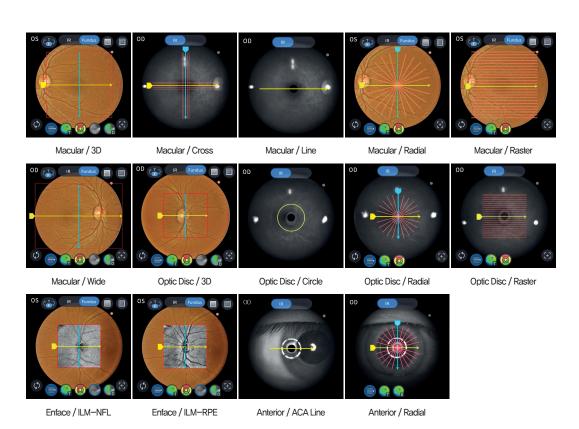
Reduces patient fixation errors with fast scanning.

A single click enables quick scanning, effectively reducing patient fixation errors. This feature enables easy and precise scanning of various areas, including the macula, optic disc, and anterior segment, thereby enhancing examiner convenience and improving diagnostic accuracy.

Wide Area Scan (12 mm x 9 mm) for efficient diagnosis

A single rapid scan can extensively cover both the macula and optic disc areas, By centering the scan on either the optic disc or the macula, depending on the patient's pathological condition, you can view thickness maps of the RNFL (Retinal Nerve Fiber Layer), GCL (Ganglion Cell Layer), and RPE layers.

Providing Various and Useful Scan Patterns

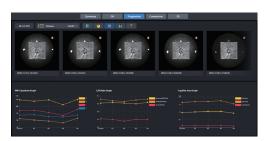

With 12 different scan patterns available, you can choose and perform the one that best corresponds to the patient's primary symptoms or the affected retinal area, enabling accurate results without repetitive tasks or wasted time.

Smart Scan Technology, Huvitz's proprietary motion detection technology

It detects eye movements and blinking during measurement via the image analyzer, preventing scan lines from disappearing mid-scan or images from vanishing and enabling the acquisition of complete C-scan images.

ECI, Enhanced Choroidal Imaging

ECI enhances signals to enable clearer observation of the choroid in retinal OCT images. Focusing on the back of the retina—the choroid—improves the signal—to—noise ratio (SNR), allowing the choroidal structure to be visualized more clearly and precisely.


Accurate Analysis

Accurate and detailed measurement: Analyze the patient's pathological condition from various perspectives.

With rational, integrated analysis, you can gain a comprehensive understanding of the progression of each patient's specific symptoms and diseases. The system provides key indicators compared to normative data, displayed in tables and charts.

Progression for tracking pathological changes

The progression feature, which tracks pathological changes from past to present, helps analyze disease progression and treatment processes. By accumulating the patient's OCT scans and fundus images, you can clearly compare sequential measurement results. In addition, you can monitor changes in nerve fiber thickness and overlay thickness, en face, and ETDRS data on IR or fundus images at each measurement point. The progression graph enables a comprehensive analysis of the patient's condition,

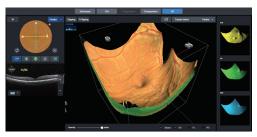
Optic Disc / Progression

Macular / Progression

OU to cross-analyze function of binocular

Provides comparative analysis for Macular Thickness, RNFL Thickness, ONH (Optic Nerve Head) of binocular.

Compare the patient's previous and current conditions


You can compare and analyze the patient's previous and current diagnostic data,

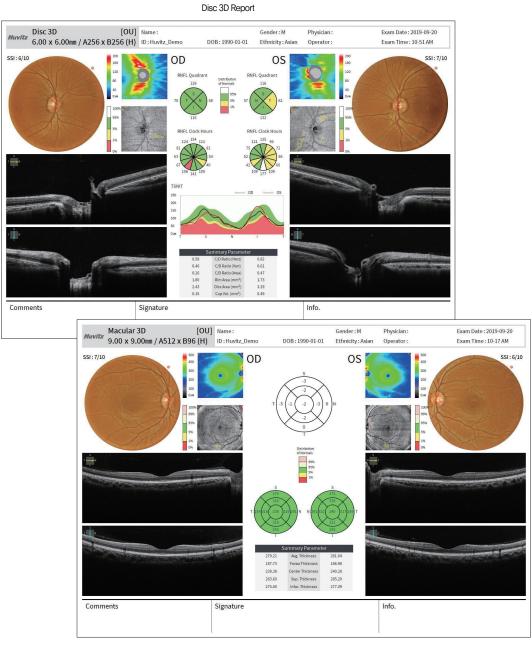
Optic Disc / Compare

3D modeling in high speed and wide area

High—speed, wide area (12 mm x 9 mm) 3D images help you quickly and comprehensively understand the condition of the Retina. Also, layer thickness maps can be used from ILM to RPE, respectively and Morphological changes on the measured surface of the layers can also be visually confirmed.

Macular / 3D

Summary: Monocular-Scan and OCT / Fundus image

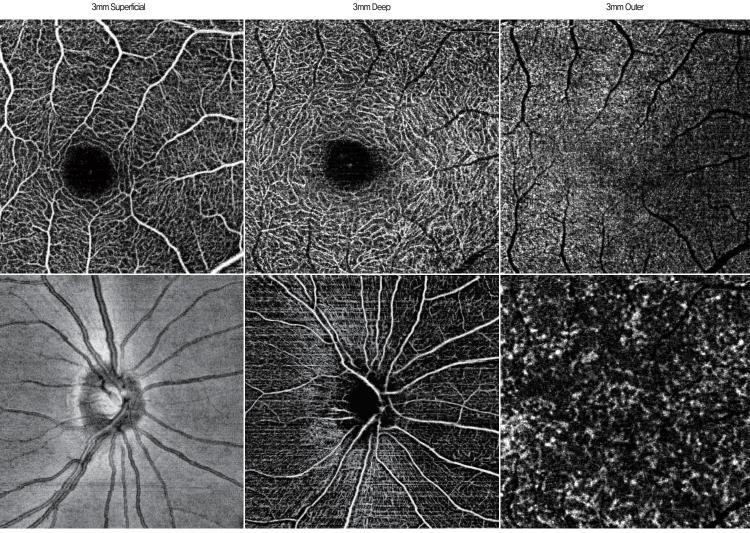

Provides a summary analysis of Macula retina, RNFL, ONH at a glance. Helps identify whether follow—up examinations are needed or not. Easy to explain the results to the patient after diagnosis.

Detailed Report

From quick summary to simple comparison and complex evaluation: Complete a perfect report.

Provides patient's pathological structure and relevant & important data in easy-to-read format and also can print out the report on analysis screen.

Analysis results can be viewed via Web Browser and printed out with different types of report.



Macular 3D Report

Innovative Angiography

Auto—Analysis of Retina & Microvessel of Choroid: Customized Treatment per Patient with Details.

Huvits' three advanced optical technologies—Real Time Tracking, Noise Cancelling, and Motion Correction—work synergistically to automatically analyze and visualize the microvasculature of the retina and choroid. In particular, fast examinations can be performed without the use of contrast agents, thereby eliminating the risk of allergies and shock associated with contrast dyes.

6 mm Disc Enface 6 mm Disc Superficial 3mm Choriocapillaris

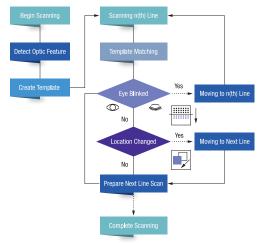
The Innovation of Optical Technologies: Faster & More Convenient Analysis is Now Able.

TAT (Triple Angiography Technology), where three advanced optical technologies work in synergy, minimizes measurement errors and enhances retinal tracking accuracy through the perfect integration of Huvitz's unique optical technology and algorithms, delivering reliable results.

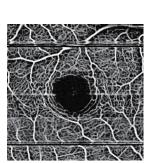
Three Innovative Optical Technologies – TAT (Triple Angiography Technology)

Real-Time Tracking to Minimize Measurement Errors by Capturing Minute Eye Movements

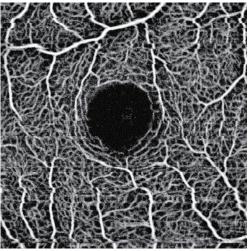
With 80,000 A-scans per second, our retinal tracking technology minimizes motion artifacts caused by subtle eye movements and blinking. This ensures seamless imaging of intricate structures such as vascular patterns and choroidal layers, producing high-resolution images quickly and accurately.

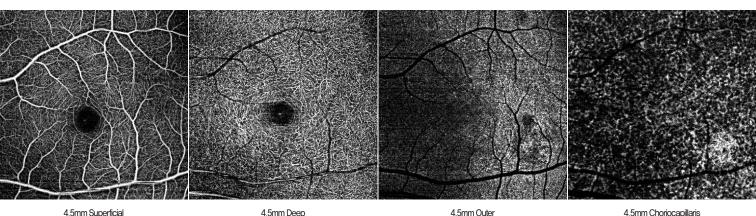

Noise Cancelling

Visual Processing Algorithm refines details of images in an instant.


Therefore, it visualizes vessel conditions of Retina's layers as high quality images.

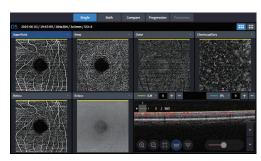
Motion Correction


This feature secures clear and continuous vascular structures, enabling quantitative analysis of blood flow. It enhances the reliability of retinal and choroidal blood flow assessments by precisely correcting vessel misalignments and providing distortion—free Angiography images that are more accurate than conventional fluorescein fundus angiography.


Real Time Tracking Technology Algorithm

Unapplied Real Time Tracking

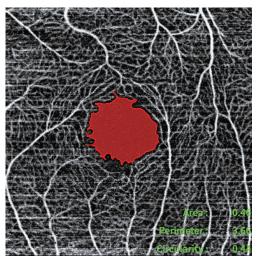
Applied Real Time Tracking


80,000 scans per second:

High-Resolution Images with Quantified Index

At a speed 26% faster than our previous models (HOCT-1/1F), it provides high-sensitivity images of retinal and choroidal blood flow and vasculature, along with accurate data on FAZ, flow, and density.

Convenient and fast automated analysis of retinal layers


OCTavius automatically provides high-resolution images and quantified data of superficial and deep retinal vascular structures, the photoreceptor layer, and the choroidal vasculature. The system enables early diagnosis of conditions such as age-related macular degeneration, diabetic retinopathy, glaucoma, retinal vein occlusion, and hypertensive retinopathy while also offering outstanding efficiency in assessing treatment effectiveness and monitoring disease progression. In Custom View Mode, abnormal vascular structures spanning multiple layers can be intuitively identified, with clear visualization of vascular structures from the inner retina to the choroid. It also offers a range of quantitative indicators—including FAZ, flows, and density—to support the development of personalized treatment plans.

Retina Layer Auto-Analysis

Detail Display Mode for precise diagnosis

In Detail Display Mode, the vascular networks of each retinal layer can be closely examined, allowing for more precise evaluations. With the built—in image analysis tools, you can easily and quickly obtain quantitative data, such as the area and shape of the FAZ.

FAZ Auto-Detection

Progression

The Progression mode helps users to follow up the pathology of a disease.

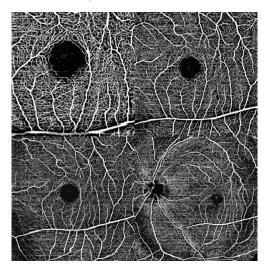
Progression

Binocular Comparison (OU)

In the Comparison Mode, users can check vascular network by layer in detail.

By indicating layers in different colors, it's easy to check and understand the pathology of a disease.

In case of comparison for diabetic retinopathy, the mode helps to track the pathology and establish treatment plan.

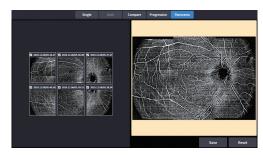

Binocular Comparison

1TB Storage

By internal 1TB Storage of HDD, users can manage data with enough space.

A Variety of Scan Sizes: 3 mm / 4.5 mm / 6 mm / 9 mm

HOCT-Angiography supports a variety of scan sizes, users can choose and observe per needs & cases.



Various Scan Sizes: 3 mm / 4.5 mm / 6 mm / 9 mm

Angio Panorama

In case of checking Angiography image with large size, it is convenient to utilize the Angio Panorama function,

 *3 mm (Max. 12 mm x 9mm), 4.5 mm (Max. 13.5 mm x 9 mm) & manual mode are available

Panorama Mode / Panoramic Image

Anterior Measurement

A single all—in—one diagnostic system:

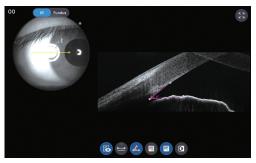
Designed for the convenience of both examiners and patients.

When equipped with the Anterior Segment Module, it enables precise measurement and analysis of corneal thickness, curvature, angle, and 3D imaging. Patients can receive examinations in a more comfortable setting without needing to move during the process, while examiners can make efficient use of space and time during diagnosis.

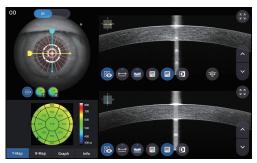
9 mm (16 mm)* Wide Chamber View

Measurement of ACA (Anterior Chamber Angle) between cornea and Iris allows diagnosis and management of angle—closure glaucoma patients.

*9 mm & 16 mm of Anterior Segment Lenses are optional,


9 mm High Resolution Cornea Thickness Measurement

9 mm High Resolution Cornea Scan provides an objective view of the structure of the eyeball.


It displays a cross-sectional image of the measured corneal thickness,

Corneal Thickness Map


Corneal's irregularity, Thinnest point can be identified with a corneal thickness map to visualize the patient's corneal thickness at a glance.

ACA Measurement

Corneal Thickness Measurement

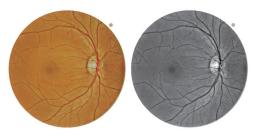
Full Color Fundus Image

Insight of Posterior Segment of Eye: for Comprehensive diagnosis.

Color Retinal Images optimized with high-resolution and contrast are very useful in analysis and clinical diagnosis. For optimal image capture, various advanced technologies have been integrated, including low flash intensity, fast capture speed, quiet operation, Small Pupil Mode, and automatic blink detection.

High resolution and performance Color Camera

Equipped with a high-performance Color Camera featuring fast frame rates, it captures high-quality images even with rapid eye movements and blinking. It also reduces motion artifacts such as blurry vascular shape distortion and discontinuities, while offering benefits like low flash intensity, fast and quiet operation, ensuring superior measurement


quality in clinical settings

.

Automatic Brightness Adjustment Based on Retina Size and Condition – Auto Flash Level

The system accurately detects pupil size and condition to automatically adjust the light intensity for measurements,

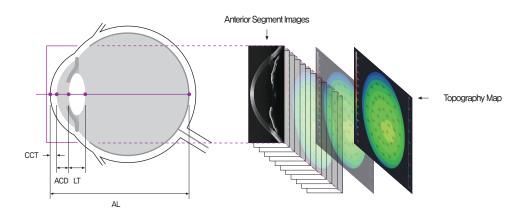
Even for patients with small pupils, measurements can be taken easily without mode switching. By selecting Small Pupil Mode, the light intensity is automatically increased to ensure optimal illumination for smaller pupils.

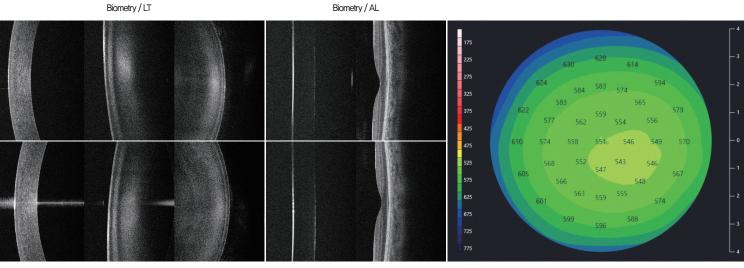
Fundus Image

Panoramic Image (Non-Mydriatic Composite Retinal Image)

Fixation Target for flexible configuration

Fixation target can be set on the display for fine adjustment of a specific part of the eyeball.

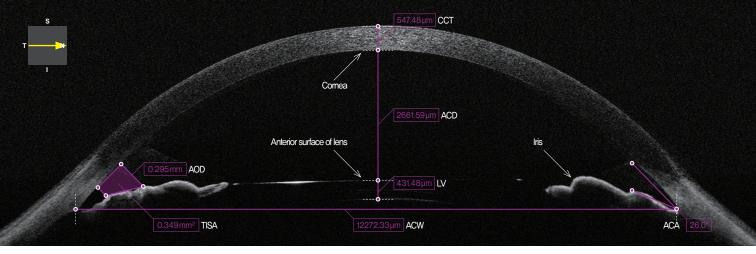

The Fundus systems allowing 135° view of fundus include


Multiple built—in capture or fundus images at different positions and automatically stitch them to optimized total overview. By providing high—resolution images with minimal distortion, you can immediately see key information for a comprehensive assessment of patient' eye,

OCT Biometry + Topography

A groundbreaking solution for professionals A Paradigm shift in OCT Technology.

It analyzes Biometry and Topography comprehensively, HOCT provides all the data you need for quick and easy calculations for optimizing the IOL lens power.



Biometry / Cornea – Lens (Front, Rear)

Biometry / Cornea - Macular

Topography Map / Pachymetry

Images of the Anterior Segment and Measurement

Sophisticated Biometry Data

Biometry from the Cornea to the Macula

From the Cornea to the Macula, HOCT displays 2D images and provides all data along the anterior and posterior segments,

After measurement is complete, the User can identify and make adjustments where necessary. Also, it is possible to evaluate a dense cataract or defects in the macula.

Visible Measurement by 2D Image

User can easily adjust lines to analyze structures, by moving the cursor on the monitor in real-time. This can allow for

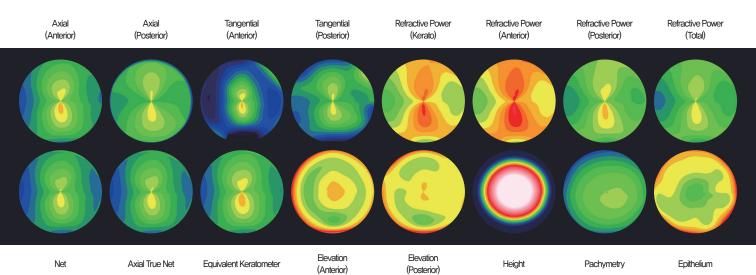
a customized treatment of the non-typical Patient.

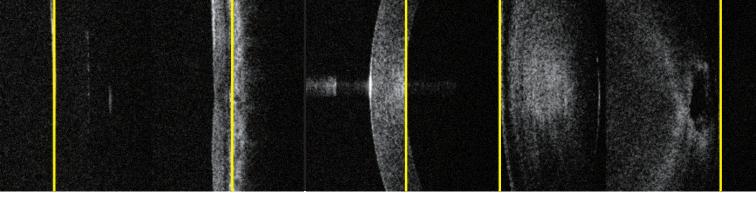
16 Map Types for Anterior & Posterior Topography

OCT Topography Methods by Optical Measurement

The HOCT Topography provides curvature data on both the anterior and posterior surface of the cornea, as well as corneal

thickness measurements, with a higher accuracy than the Placido or Scheimpflug methods. It minimizes motion artifacts


because of its 2-second high speed capture rate.


16 Map Types for Customized Treatment

HOCT provides 16 map types including the anterior & posterior surfaces of the cornea. Users can display a wide

variety of options to analyze and diagnose. In particular, posterior corneal surface measurements that allow for more

accurate surgical outcomes.

More Precise Biometry

Accurate Measurement by 2D Image: Visualize & Measure in Full Anterior Image of 16 mm

Confirmation Display able to Choose & Readjustment

The automatically detected boundaries can be manually adjusted, and the changes can be updated in real time in the table on the left. You can exclude measurement items with large error margins from the statistics.

Full Anterior Image for Wider Evaluation

You can use the Wide Lens measurement to acquire a full anterior image, and check values such as CCT, ACD, ACA, W-to-W, LV, TISA, and TID* with a simple click. This enables the diagnosis of various anterior segment diseases, including glaucoma.

*CCT: Central Cornea Thickness, ACD: Anterior chamber depth, ACA: Anterior chamber angle, W-to-W: White to White,

LV: Lens vault, TISA: trabecular-iris space area, TID: trabecular-iris distance

Single

Contact Lens Fitting with Instant Check

HOCT allows Users to check the suitability of Hard & Soft Contact Lenses for their Patients.

It can also check the fit of an existing Contact Lens, quickly & precisely..

Reliable IOL Lens Recommendation

Based on extensive clinical data, measured biometry, and corneal curvature values, the system provides systematic support for early diagnosis and surgical planning of corneal diseases, glaucoma, cataracts, and vision correction, recommending the optimal IOL lens powers for each patient.

IOL Calculation

View Function to Check the Basis of Disease

Full Anterior Image, 12 types of Cornea Tomograph, Biometry Data (AL, LT, CCT, ACD)

Tomography Image of Cornea

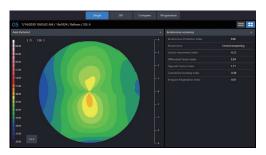
The OU Display allows comparison and analysis of asymmetry between the left and right eyes.

OU

More Exquisite Topography

Comprehensive Analysis by Topography in OCT Method: Providing Total Cornea Power Map able to measure Anterior & Posterior.

Total Cornea Power Map for a comprehensive view of corneal abnormalities


It precisely analyzes the posterior cornea, which was previously unmeasurable by the Placido method. By incorporating complex factors such as the curvature of the anterior and posterior cornea, corneal thickness, and refractive index differences among air, corneal tissue, and vitreous, it minimizes measurement errors and enhances diagnostic accuracy and reliability.

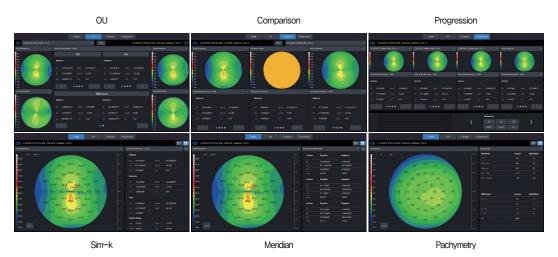
Compact layout, various options

총It provides a total of 16 corneal curvature and thickness maps, along with summary and detailed diagnostic screens. Additionally, its user settings let you select various color palettes and display units, creating an optimal analysis environment. Based on the map analysis results, you can quickly and accurately verify Sim–K, meridian, and key diagnostic values for keratoconus and other conditions.

Simple setting & integrated Display

Keratoconus Analysis

Analysis Display / Numerical Information

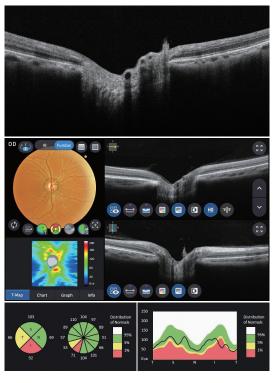

Users can analyze with either Single Eye, OU, or Comparison functionality. It is also possible to check for clinical

changes after treatment or surgery with the Progression function.

Because the Map displays accurate distance, size, and area with numerical information, the User is able to perform

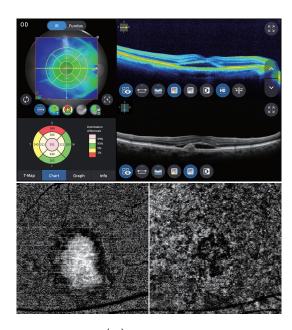

their analysis with confidence..

- Sim-K: Typical curve in order to utilize optimal IOL Lens calculation
- Meridian : Provide ø3, 5, 7 mm meridian by dividing the comea into 3 areas
- $\hbox{\bf \bullet Pachymetry:} \ \hbox{\bf Total Thickness of Comea}$
- Epithelium : Provide epithelium thickness at each point

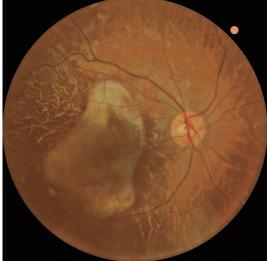

Clinic Exams

High-quality, high-resolution OCT and color fundus images from HOCT are extremely useful for analysis and clinical diagnosis as the pathologic structure and status of each layer are accurately observed and recorded.

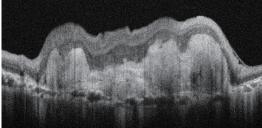
Macular Hole (MH), RVO (Retinal Vein Occlusion)

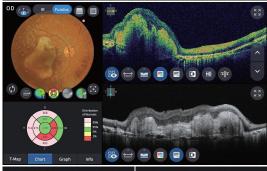

A macular hole is a retinal break commonly involving the fovea,
Severe stage of RVO progressed to a macular hole,

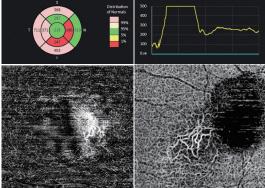
Glaucoma

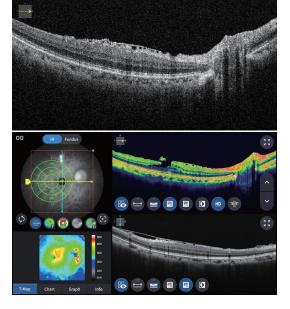

Giaucoma is a disease that damages your eye's optic nerve.

The same symptoms are found at Thickness map, Fundus, TSNIT chart, Clock chart




Macular Degeneration (MD)

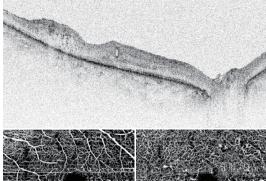

Age-related macular degeneration is a disease that blurs the sharp, central vision you need for straight-ahead activities,

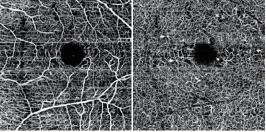

Choroidal Neovascularization (CNV)

Choroidal neovascularization refers to condition that new blood vessels created in the choroid layer,

In this case, because of huge choroidal neovascularization, distort the normal alignment of the overlying retina.

It can be seen that the overlying photoecoptor layer is not clearly delinear attend from the other retinal layers, and the temporal retina also has the geographic atrophy of the photoreceptor layers and retinal pigment epithelial layers.

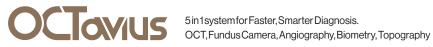

This results is also visible on the Fundus photograph and Outer retina of angiography.



Epiretinal Membrane (ERM)

Epiretinal membrane is a disease of the eye in response to changes in the vitreous humor or more rarely, diabetes,

Diabetic Retinopathy (DR)


Diabetic retinopathy is when high blood sugar levels cause damage to blood vessels in the retina,

These blood vessels can swell and leak,

Or they can close, stopping blood from passing through, $\,$

Sometimes abnormal new blood vessels grow on the retina,

Specification

	Principle	Spectral domain OCT, Fundus digital photography
OCT Angiography – Option (HOCT–1, HOCT–1F)	Light source	840 nm
	Scanspeed	Max. 80,000 A-Scan/sec.
	Resolution in tissue	20 um (Lateral), 7 um (z-axis) at index 1,36
	Scan Range	X:6~12 mm, Y:6~9 mm, Z:2,34 mm
	Display resolution	X:5.85 um, Y:23.40 um, Z:3.05 um
	Minimum pupil diameter	2,5 mm
	Scan patterns	Macular : Macular Line, Macular Cross, Macular Radial, Macular3D, Macular Raster, Angio (Option)
		Disk: Disc Circle, Disc Radial, Disc 3D, Disc Raster, Angio (Option)
	Optical power at cornea	≤1,3 mW
	Acquisition time of 3D image	1,0 sec (Normal Mode, A512xB96)
	Depth Accuracy (measuring 1 mm glass)	±3%
	Angiography Range	3–9 mm
	Angiography Map	Superficial, Deep, Outer, Choroicapilary, Retina, Custom, Enface, Thickness map, Depth coded map
	Angiography Analysis	FAZ, Vessel Density
Fundus Camera (HOCT–1F)	Туре	Non-mydriatic fundus camera
	Resolution	60 line pair/mm or more (center) 40 line pair/mm or more (middle) 25 line pair/mm or more (periphery)
	Angle of view	45°
	Camera	Built—in 12M pixel, Color or Built—in 20M pixel, Color
	Minimum pupil diameter	4.0 mm (Normal mode), 3.3 mm (Small pupil mode)
	Flash light	White light, 10 levels
	Pixel pitch at fundus	3.69 um (20M pixel Color)4.63 um (12M pixel Color)
	Capture mode	Single, Stereo, Widefield Panorama
Common specification	Working distance	33 mm
	Display	12,1 inch, 1280 x 800 pixel, Touch panel color LCD
	Dioptric compensation forpatient's eye	-33D~+33D total -13D~+13D with no compensation lens +7D~+33D with plus compensation lens -33D~-7D with minus compensation lens
	Fixation target	LCD (internal), White LED (external)
	Fundus illumination light	760 nm
	Horizontal movement	70 mm (back and forth), 100 mm (left and right)
	Vertical movement	30 mm
	Chinrest movement	62 mm (up and down), motorized
	Auto tracking	30 mm (up and down), 10 mm (right and left), 10 mm (back and forth)
	Power supply	AC 100 - 240 V, 50/60 Hz, 1,6 - 0,7 A
	PC	Built in computer
	LCD Tilting Angle	70°
	Dimensions / Mass	330 (W) x 542 (D) x 521 (H) mm / 30 kg
Anterior segment adapter (optional)	Working distance	15 mm
	Scanrange	6~9 mm (width), 2,3 mm (depth)
	Scanpattern	ACA line, Anterior Radial
	Software Analysis	Corneal Layers, Thickness Map, Thickness, Angle
Wide Anterior segment adapter (optional)	Working distance	15 mm
	Scanrange	16 mm (width), 2,3 mm (depth)
	Scan pattern	ACA line, Anterior Radial, Full
	Software Analysis	Dimension, Angle
Biometry (optional)	Metric	AL, CCT, ACD, LT, WtoW
Fopography (optional)	Supported Maps	Axial map, Tangential map, Keratoconus Screening
		Web-Based, Multi users can be accessible
HIIS-1	Feature	Progression analysis, Comparison analysis, 3D Analysis

^{*} Specification and design are subject to change without notice.

